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Abstract. In digital histopathology, automatic biomarkers quantification at the whole slide
level enables the precise characterization of a pathology progression or drug efficiency. Su-
pervised Machine Learning (SML) algorithms allow the automation of such tasks but rely
on large annotated learning datasets. Unfortunately, such datasets are not easily available,
mainly due to the tedious task of manual segmentation. A strategy to overcome this problem
is to artificially extend these sets using Data Augmentation. Although approaches relying
on traditional Data Augmentation are the most developed and used, Generative Adversarial
Networks (GAN) recently gained interest despite their intrinsic complexity and need of large
learning databases. Indeed, GANs requirements in terms of learning data quantity and qual-
ity are often underestimated especially in cases where manually annotated data are scarce. In
this exploratory work, we aimed at measuring GAN efficiency when fed with synthetic data
generated with a set of traditional Data Augmentation methods. Generated models relevancy
and accuracy were assessed by evaluating the quality of resulting segmentation with U-Net.
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1 Introduction

Histology is widely used to detect biological objects with specific staining such as protein deposits,
blood vessels or cells. Staining quantification heavily relies on manual techniques, a tedious and
time-consuming task, highly dependent on the bias of the experts. Therefore, automated methods,
among which supervised machine learning SML [1], are increasingly used to automatically detect
and quantify biological structures. One of the biggest issues facing the use of SML in Whole Slide
Imaging is the lack of large, labelled and available datasets. The limited amount of annotated data
can negatively impact subsequent segmentation quality of SML algorithms [2]. To overcome these
issues, learning datasets can be artificially increased using data augmentation [3]. A number of
methods have been proposed in the last decade, based on traditional methods. The main limitation
is the degree of freedom of such methodologies [4]. In contrast GAN Data Augmentation algorithms
allow a wider diversity of generated images. However GAN methods rely on large learning datasets
in order to achieve robust generation with realistic images [4]. In cases where only limited learning
datasets are available, traditional Data Augmentation methods can be used to increase the size
of the original dataset to train the GAN Data Augmentation. However the optimal traditional
Data augmentation method and the minimal amount of data to use remain not fully explored. The
presented work aims at evaluating GAN generated histological learning dataset by training the
GAN algorithm with different learning datasets configuration, either augmented or limited in size.
The synthetic learning datasets are used to train a U-Net to classify an independent test dataset
and the subsequent segmentation quality is evaluated.



2 Material and Methods

Histological dataset Dataset was composed of 114 histological sections extracted from a 13.5-
months-old mouse amyloidosis model (APP/PS1dE9) brain stained with beta Amyloid Monoclonal
Antibody (BAM-10) and counter-stained with Blue Reagent [4]. From the digitized sections, 100
images of 512x512 pixels were extracted and annotated by an expert. The annotations were con-
sidering two classes: 1- background and Blue Reagent stained tissue and 2- BAM-10 stained tissue.
Then, 1,600 images of 128x128 pixels each were randomly extracted from the 100 images of 512x512
pixels. This dataset was split in half in an initial learning and a test dataset (800 couples each).

Traditional Data Augmentation methods A total of 5 common traditional Data Augmenta-
tion methods were selected to amplify the original learning dataset. The first method was based
on rotation, reversal [6] and a custom-made circular translation method. The latter consisted in
splitting an image into 2 parts, blending one part with the reversal of the other using the Gaussian
Laplacian Pyramid Blend algorithm [6]. The other used methods were Random Affine [6], Random
Gauss Blur [6], Random Elastic transformation [6] and HED Jitter [6]. The chosen methods were
labeled in two groups: spatial Data Augmentation methods (sDA: Geometric, Random Affine and
Random Elastic methods) and intensity Data Augmentation (iDA: Random Gaussian Blur and
HED Jitter methods). The augmentation factor (i.e. the ratio between the augmented dataset and
the initial one) was set to 5.

DC-GAN induced Data Augmentation The original method was based on the competition
of two networks: a Generator network aimed at producing realistic images to fool a Discriminator
network [12]. The Deep Convolutional GAN (DC-GAN) [13] consisted in convolution layers without
max pooling or fully connected layers. This algorithm was chosen because of its versatility [4][14].
The DC-GAN was trained to produce a couple of generated images to simulate a learning dataset,
with 360 epochs and an augmentation factor of 1.

U-Net segmentation and Data Augmentation validation To validate the data augmentation
protocol, we used U-Net, a supervised deep learning segmentation method developed for biomedical
image segmentation [15]. The network was configured with default architecture parameters and
trained with 35 epochs. A two-fold cross-validation (Direct Validation DV and Cross Validation
CV) was performed through F-score computation against the test dataset (F-Score-Test).

Proposed methodology U-Net was trained with two different approaches. First the DC-GAN was
trained with the learning dataset corresponding to 90% of the initial learning dataset (720 randomly
selected images) without traditional Data Augmentation methods. In the second approach, the
learning dataset was reduced by a factor q and amplified using each one of the 5 traditional methods
previously presented. The possible values for q were 0.25, 0.5, 0.75, 0.8, 0.9 and 1. Each learning
approach was performed in a two-fold-cross-validation.

3 Results

As a reference result, the F-Score-Test without augmentation and with the initial learning dataset
was 0.877 in DV and 0.883 in CV. The first learning approach did not converge with the initial
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Fig. 1. Comparison between traditional Data Augmentation method with the second learning approach.
F-score-Test (DV continuous line and CV dashed line) against q values.

dataset and generated unusable couples of images (F-Score-Test close to 0). With a value of q<0.25,
the DC-GAN was not able to generate exploitable images. The F-Score-Test for the iDA were not
converging for high q values through the two validation conditions. In the sDA group, only the
Geometric method has not converged for high q values (Fig. 1). The Random Affine plateaued above
0.86 for both validation conditions around q=0.75 (540 images of 128x128 pixels). The Random
Elastic plateaued above 0.87 at q=0.9 (648 images of 128x128 pixels). For all synthetic datasets,
no significant improvement in the resulting segmentation quality was measured.

4 Conclusion

In the light of these observations, the DC-GAN seemed to converge following specific conditions on
the size of the intermediate learning dataset and the type of algorithm used to generate it. Ran-
dom Elastic and Random Affine methods were both converging for both validation conditions at
q=0.9. At this q value, the intermediate dataset sized 3,240 images of 128x128 pixels. This number
of samples is consistent with the results presented in Frid-Adar et al. for a lower augmentation
factor [4]. In the case of BAM-10 stained tissue, Random Elastic and Random Affine methods sig-
nificantly achieved better F-Score-Test than the other tested Data Augmentation algorithms. The
supposed conjecture was the high spatial distortion in the generated images. Then the convergence
of DC-GAN was more sensitive to spatial diversity of the intermediate learning dataset than its col-
orimetric or intensity diversity [14]. To confirm this hypothesis, further work is currently conducted
to measure spatial distortion resulting from the traditional Data Augmentation and correlate with
the aforementioned conjecture. In this work, no synthetic learning dataset allowed a significant
increase in the segmentation quality with U-Net compared with the initial learning dataset. This
stagnation was due to the single augmentation factor used which was inferior to other augmentation
factors found in the litterature [2]. Further work is conducted to vary the augmentation factor for
each traditional Data Augmentation method to find an optimal value. With the increase of the
augmentation factor and the multiplication of the generated images, new metrics - such as PSNR
or SSIM - will be implemented to automatically evaluate image quality of whole datasets [16]. Other
GAN implementations will be evaluated to assess the minimal size of their intermediate datasets
and their optimal traditional Data Augmentation method.
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